Karipidis, K., Mate, R., Urban, D., Tinker, R. & Wood, A. 5G mobile networks and health—a state-of-the-science review of the research into low-level RF fields above 6 GHz. J. Expo. Sci. Environ. Epidemiol. https://doi.org/10.1038/s41370-021-00297-6 (2021).
Google Scholar
Ramirez-Vazquez, R. et al. Georeferencing of personal exposure to radiofrequency electromagnetic fields from Wi-fi in a university area. Int. J. Environ. Res. Public Health 17, 1898. https://doi.org/10.3390/ijerph17061898 (2020).
Google Scholar
Morelli, M. S., Gallucci, S., Siervo, B. & Hartwig, V. Numerical analysis of electromagnetic field exposure from 5G mobile communications at 28 GHZ in adults and children users for real-world exposure scenarios. Int. J. Environ. Res. Public Health 18, 1073. https://doi.org/10.3390/ijerph18031073 (2021).
Google Scholar
Brzozek, C., Zeleke, B. M., Abramson, M. J., Benke, K. K. & Benke, G. Radiofrequency electromagnetic field exposure assessment: a pilot study on mobile phone signal strength and transmitted power levels. J. Expo. Sci. Environ. Epidemiol. 31, 62–69. https://doi.org/10.1038/s41370-019-0178-6 (2021).
Google Scholar
Ramirez-Vazquez, R., Gonzalez-Rubio, J., Escobar, I., Suarez Rodriguez, C. D. P. & Arribas, E. Personal exposure assessment to Wi-Fi radiofrequency electromagnetic fields in Mexican microenvironments. Int. J. Environ. Res. Public Health 18, 1857. https://doi.org/10.3390/ijerph18041857 (2021).
Google Scholar
Humans, I. W. G. o. t. E. o. C. R. t. Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC monographs on the evaluation of carcinogenic risks to humans 102, 1 (2013).
Asl, J. F. et al. The possible global hazard of cell phone radiation on thyroid cells and hormones: a systematic review of evidences. Environ. Sci. Pollut. Res. Int. 26, 18017–18031. https://doi.org/10.1007/s11356-019-05096-z (2019).
Google Scholar
Simko, M. & Mattsson, M. O. 5G wireless communication and health effects-a pragmatic review based on available studies regarding 6 to 100 GHz. Int. J. Environ. Res. Public Health 16, https://doi.org/10.3390/ijerph16183406 (2019).
Leszczynski, D. Physiological effects of millimeter-waves on skin and skin cells: an overview of the to-date published studies. Rev. Environ. Health 35, 493–515. https://doi.org/10.1515/reveh-2020-0056 (2020).
Google Scholar
Banaceur, S., Banasr, S., Sakly, M. & Abdelmelek, H. Whole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer’s disease (3xTg-AD). Behav. Brain Res. 240, 197–201, https://doi.org/10.1016/j.bbr.2012.11.021 (2013).
Hassanshahi, A. et al. The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats. Neurol. Sci. 38, 1069–1076. https://doi.org/10.1007/s10072-017-2920-y (2017).
Google Scholar
Magiera, A. & Solecka, J. Radiofrequency electromagnetic radiation from Wi-fi and its effects on human health, in particular children and adolescents. Review. Rocz Panstw Zakl Hig. 71, 251–259, https://doi.org/10.32394/rpzh.2020.0125 (2020).
Fahmy, H. M. & Mohammed, F. F. Hepatic injury induced by radio frequency waves emitted from conventional Wi-Fi devices in Wistar rats. Hum. Exp. Toxicol. 40, 136–147. https://doi.org/10.1177/0960327120946470 (2021).
Google Scholar
Zhang, J. P. et al. Effects of 1.8 GHz radiofrequency fields on the emotional behavior and spatial memory of adolescent mice. Int. J. Environ. Res. Public Health 14, https://doi.org/10.3390/ijerph14111344 (2017).
Guo, L. et al. Effects of 1.8 GHz radiofrequency field on microstructure and bone metabolism of femur in mice. Bioelectromagnetics 39, 386–393, https://doi.org/10.1002/bem.22125 (2018).
Khan, M. D., Ali, S., Azizullah, A. & Shuijin, Z. Use of various biomarkers to explore the effects of GSM and GSM-like radiations on flowering plants. Environ. Sci. Pollut. Res. Int. 25, 24611–24628. https://doi.org/10.1007/s11356-018-2734-3 (2018).
Google Scholar
Rui, G. et al. Effects of 5.8 GHz microwave on hippocampal synaptic plasticity of rats. Int. J. Environ. Health Res., 1–13, https://doi.org/10.1080/09603123.2021.1952165 (2021).
Zhao, L. et al. Immune responses to multi-frequencies of 1.5 GHz and 4.3 GHz microwave exposure in rats: transcriptomic and proteomic analysis. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23136949 (2022).
Zheng, P. et al. The gut microbiome modulates gut-brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression. Mol. Psychiatry 26, 2380–2392. https://doi.org/10.1038/s41380-020-0744-2 (2021).
Google Scholar
Needham, B. D. et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 602, 647–653. https://doi.org/10.1038/s41586-022-04396-8 (2022).
Google Scholar
Wu, W. L. et al. Microbiota regulate social behaviour via stress response neurons in the brain. Nature 595, 409–414. https://doi.org/10.1038/s41586-021-03669-y (2021).
Google Scholar
Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, https://doi.org/10.1126/science.aar2016 (2019).
Tai, Y. K. et al. Magnetic fields modulate metabolism and gut microbiome in correlation with Pgc-1alpha expression: Follow-up to an in vitro magnetic mitohormetic study. FASEB J. 34, 11143–11167. https://doi.org/10.1096/fj.201903005RR (2020).
Google Scholar
Luo, X. et al. Electromagnetic field exposure-induced depression features could be alleviated by heat acclimation based on remodeling the gut microbiota. Ecotoxicol. Environ. Saf. 228, 112980. https://doi.org/10.1016/j.ecoenv.2021.112980 (2021).
Google Scholar
Qin, T. Z. et al. Effects of radiofrequency field from 5G communications on the spatial memory and emotionality in mice. Int. J. Environ. Health Res., 1–12, https://doi.org/10.1080/09603123.2022.2149708 (2022).
Safety, I. I. C. o. E. IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE Std C95.1–2019 (Revision of IEEE Std C95.1–2005/ Incorporates IEEE Std C95.1–2019/Cor 1–2019), 1–312, https://doi.org/10.1109/IEEESTD.2019.8859679 (2019).
Kim, K. et al. Effects of electromagnetic waves with LTE and 5G bandwidth on the skin pigmentation in vitro. Int. J. Mol. Sci. 22, 170. https://doi.org/10.3390/ijms22010170 (2021).
Google Scholar
Lee, S. et al. 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett. 579, 4829–4836, https://doi.org/10.1016/j.febslet.2005.07.063 (2005).
Merhi, Z. O. Challenging cell phone impact on reproduction: a review. J. Assist. Reprod. Genet. 29, 293–297. https://doi.org/10.1007/s10815-012-9722-1 (2012).
Google Scholar
La Vignera, S., Condorelli, R. A., Vicari, E., D’Agata, R. & Calogero, A. E. Effects of the exposure to mobile phones on male reproduction: A review of the literature. J. Androl. 33, 350–356. https://doi.org/10.2164/jandrol.111.014373 (2012).
Google Scholar
Zhao, T. Y., Zou, S. P. & Knapp, P. E. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 412, 34–38. https://doi.org/10.1016/j.neulet.2006.09.092 (2007).
Google Scholar
Ruediger, H. W. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 16, 89–102. https://doi.org/10.1016/j.pathophys.2008.11.004 (2009).
Google Scholar
Lai, H. & Singh, N. P. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect 112, 687–694. https://doi.org/10.1289/ehp.6355 (2004).
Google Scholar
Morgan, L. L., Miller, A. B., Sasco, A. & Davis, D. L. Mobile phone radiation causes brain tumors and should be classified as a probable human carcinogen (2A) (review). Int. J. Oncol. 46, 1865–1871. https://doi.org/10.3892/ijo.2015.2908 (2015).
Google Scholar
Lee, Y. et al. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 19, 118–126. https://doi.org/10.1038/s41563-019-0462-9 (2020).
Google Scholar
Gong, S. et al. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J. Hepatol. 69, 51–59. https://doi.org/10.1016/j.jhep.2018.02.024 (2018).
Google Scholar
Pryor, R. et al. Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy. Cell 178, 1299–1312 e1229, https://doi.org/10.1016/j.cell.2019.08.003 (2019).
McKenzie, C., Tan, J., Macia, L. & Mackay, C. R. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol. Rev. 278, 277–295. https://doi.org/10.1111/imr.12556 (2017).
Google Scholar
Liu, J., Liu, C. & Yue, J. Radiotherapy and the gut microbiome: facts and fiction. Radiat. Oncol. 16, 1–15. https://doi.org/10.1186/s13014-020-01735-9 (2021).
Google Scholar
Jian, Y., Zhang, D., Liu, M., Wang, Y. & Xu, Z.-X. The impact of gut microbiota on radiation-induced enteritis. Front. Cell. Infect. Microbiol., 697, https://doi.org/10.3389/fcimb.2021.586392 (2021).
Kordahi, M. C. & Chassaing, B. The intestinal microbiota: our best frenemy in radiation-induced damages?. Cell Host Microbe 29, 7–9. https://doi.org/10.1016/j.chom.2020.12.013 (2021).
Google Scholar
Fernandes, A., Oliveira, A., Soares, R. & Barata, P. The effects of ionizing radiation on gut microbiota, a systematic review. Nutrients 13, 3025, 10.3390/ nu13093025 (2021).
Li, Y. et al. Effect of gut microbiota and its metabolite SCFAs on radiation-induced intestinal injury. Front. Cell. Infect. Microbiol. 11, 630. https://doi.org/10.3389/fcimb.2021.577236 (2021).
Google Scholar
Wong, C. N., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900. https://doi.org/10.1111/j.1462-2920.2011.02511.x (2011).
Google Scholar
Wang, Y. et al. 3.5-GHz radiofrequency electromagnetic radiation promotes the development of Drosophila melanogaster. Environ. Pollut. 294, 118646, https://doi.org/10.1016/j.envpol.2021.118646 (2022).
Li, Y. et al. Alterations of the gut microbiome composition and lipid metabolic profile in radiation enteritis. Front. Cell Infect. Microbiol. 10, 541178. https://doi.org/10.3389/fcimb.2020.541178 (2020).
Google Scholar
Zhong, L. et al. Tuber indicum polysaccharide relieves fatigue by regulating gut microbiota in mice. J. Funct. Foods 63, https://doi.org/10.1016/j.jff.2019.103580 (2019).
Lam, V. et al. Intestinal microbiota as novel biomarkers of prior radiation exposure. Radiat. Res. 177, 573–583. https://doi.org/10.1667/rr2691.1 (2012).
Google Scholar
Banna, G. L. et al. Lactobacillus rhamnosus GG: an overview to explore the rationale of its use in cancer. Front. Pharmacol. 8, 603. https://doi.org/10.3389/fphar.2017.00603 (2017).
Google Scholar
Goudarzi, M. et al. An integrated multi-omic approach to assess radiation injury on the host-microbiome axis. Radiat. Res. 186, 219–234. https://doi.org/10.1667/RR14306.1 (2016).
Google Scholar
Antwis, R. E. et al. Impacts of radiation exposure on the bacterial and fungal microbiome of small mammals in the Chernobyl Exclusion Zone. J. Anim. Ecol. 90, 2172–2187. https://doi.org/10.1111/1365-2656.13507 (2021).
Google Scholar
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662. https://doi.org/10.1038/s41586-019-1237-9 (2019).
Google Scholar
Ji, T. et al. Deletion of glutamate carboxypeptidase II (GCPII), but not GCPIII, provided long-term benefits in mice with traumatic brain injury. CNS Neurosci. Ther. 29, 3786–3801. https://doi.org/10.1111/cns.14299 (2023).
Google Scholar
Rahn, K. A. et al. Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis. Proc. Natl. Acad. Sci. USA 109, 20101–20106. https://doi.org/10.1073/pnas.1209934109 (2012).
Google Scholar
Datta, D. et al. Glutamate carboxypeptidase II in aging rat prefrontal cortex impairs working memory performance. Front. Aging Neurosci. 13, 760270. https://doi.org/10.3389/fnagi.2021.760270 (2021).
Google Scholar
Xue, C. et al. Tryptophan metabolism in health and disease. Cell Metab. 35, 1304–1326. https://doi.org/10.1016/j.cmet.2023.06.004 (2023).
Google Scholar
Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 23, 716–724. https://doi.org/10.1016/j.chom.2018.05.003 (2018).
Google Scholar
Yang, Y. et al. Aryl hydrocarbon receptor dependent anti-inflammation and neuroprotective effects of tryptophan metabolites on retinal ischemia/reperfusion injury. Cell Death Dis. 14, 92. https://doi.org/10.1038/s41419-023-05616-3 (2023).
Google Scholar
Lopez-Otin, C., Galluzzi, L., Freije, J. M. P., Madeo, F. & Kroemer, G. Metabolic control of longevity. Cell 166, 802–821. https://doi.org/10.1016/j.cell.2016.07.031 (2016).
Google Scholar
Li, P., Yin, Y. L., Li, D., Kim, S. W. & Wu, G. Amino acids and immune function. Br. J. Nutr. 98, 237–252. https://doi.org/10.1017/S000711450769936X (2007).
Google Scholar
Wu, G. Amino acids: metabolism, functions, and nutrition. Amino Acids 37, 1–17. https://doi.org/10.1007/s00726-009-0269-0 (2009).
Google Scholar
Dai, Z., Wu, G. & Zhu, W. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci. 16, 1768–1786. https://doi.org/10.2741/3820 (2011).
Google Scholar
Xie, J. et al. Tryptophan metabolism as bridge between gut microbiota and brain in chronic social defeat stress-induced depression mice. Front. Cell Infect. Microbiol. 13, 1121445. https://doi.org/10.3389/fcimb.2023.1121445 (2023).
Google Scholar
Xue, C. et al. Tryptophan metabolism in health and disease. Cell Metabolism 35, 1304–1326. https://doi.org/10.1016/j.cmet.2023.06.004 (2023).
Google Scholar
Platten, M., Nollen, E. A. A., Röhrig, U. F., Fallarino, F. & Opitz, C. A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 18, 379–401. https://doi.org/10.1038/s41573-019-0016-5 (2019).
Google Scholar