Close Menu
Tech Zero NewsTech Zero News
  • Home
  • AI
  • VR & AR
    • Automotive Technology & Autonomous Vehicles
    • Big Data & Data Analysis
    • Blockchain & Cryptocurrencies
    • Energy & Green Technology
    • Games & Gaming Technology
    • Mobile Communications & Telecommunications
    • Technological Developments in the Healthcare Industry
    • Technology Market Trends & Analysis
    • Technology Policy & Regulation
  • Biotechnology
  • Cybersecurity
  • Cloud Computing & Infrastructure
  • Space Technology
    • IOT
    • Startups & Innovations
  • Gaming
  • Robotics
What's Hot

California DMV uses Avalanche (AVAX)

August 1, 2024

University of Limerick Researchers Unveil Robotic Solution for Floating Wind Turbine Maintenance

August 1, 2024

New York startup sells used Pelotons, a pandemic hit

July 30, 2024
Facebook X (Twitter) Instagram
Tech Zero News
  • Home
  • AI
  • VR & AR
    • Automotive Technology & Autonomous Vehicles
    • Big Data & Data Analysis
    • Blockchain & Cryptocurrencies
    • Energy & Green Technology
    • Games & Gaming Technology
    • Mobile Communications & Telecommunications
    • Technological Developments in the Healthcare Industry
    • Technology Market Trends & Analysis
    • Technology Policy & Regulation
  • Biotechnology
  • Cybersecurity
  • Cloud Computing & Infrastructure
  • Space Technology
    • IOT
    • Startups & Innovations
  • Gaming
  • Robotics
Tech Zero NewsTech Zero News
Home » Neurodesk: an accessible, flexible and portable data analysis environment for reproducible neuroimaging
Big Data & Data Analysis

Neurodesk: an accessible, flexible and portable data analysis environment for reproducible neuroimaging

ZechBy ZechJanuary 8, 2024No Comments13 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email


Halchenko, Y. & Hanke, M. Open is not enough. let’s take the next step: an integrated, community-driven computing platform for neuroscience. Front. Neuroinform. 6, 22 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar 

Hanke, M. & Halchenko, Y. Neuroscience runs on GNU/Linux. Front. Neuroinform. 5, 8 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Niso, G. et al. Open and reproducible neuroimaging: from study inception to publication. NeuroImage 263, 119623 (2022).

Article 
PubMed 

Google Scholar 

Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility of compute. PLoS ONE 12, e0177459 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Van Gorp, P. & Mazanek, S. SHARE: a web portal for creating and sharing executable research papers. Procedia Comput. Sci. 4, 589–597 (2011).

Article 

Google Scholar 

Poline, J. -B. et al. Is neuroscience FAIR? a call for collaborative standardisation of neuroscience data. Neuroinformatics 20, 507–512 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Silberzahn, R. et al. Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv. Methods Pract. Psychol. Sci. 1, 337–356 (2018).

Article 

Google Scholar 

Tapera, T. M. et al. FlywheelTools: data curation and manipulation on the Flywheel platform. Front. Neuroinform. 15, 678403 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Routier, A. et al. Clinica: an open-source software platform for reproducible clinical neuroscience studies. Front. Neuroinform. 15, 689675 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Abe, T. et al. Neuroscience cloud analysis as a service: an open-source platform for scalable, reproducible data analysis. Neuron 110, 2771–2789 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Goodman, S. N., Fanelli, D. & Ioannidis, J. P. A. What does research reproducibility mean? Sci. Transl. Med. 8, 341ps12–341ps12 (2016).

Article 
PubMed 

Google Scholar 

Nosek, B. A. et al. Replicability, robustness, and reproducibility in psychological science. Annu. Rev. Psychol. 73, 719–748 (2022).

Article 
PubMed 

Google Scholar 

Plesser, H. E. Reproducibility vs. replicability: a brief history of a confused terminology. Front. Neuroinform. 11, 76 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Nosek, B. A. et al. Promoting an open research culture. Science 348, 1422–1425 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Boettiger, C. An introduction to Docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 49, 71–79 (2015).

Article 

Google Scholar 

Trunov, A. S., Voronova, L. I., Voronov, V. I. & Ayrapetov, D. P. Container cluster model development for legacy applications integration in scientific software system. in 2018 IEEE International Conference ‘Quality Management, Transport and Information Security, Information Technologies’ (IT QM IS) 815–819 https://doi.org/10.1109/ITMQIS.2018.8525120 (2018).

Thomas, T. et al. Jupyter Notebooks—a publishing format for reproducible computational workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds Loizides, F. & Schmid, B.) 87–90 (IOS Press, 2016).

Glatard, T. et al. Reproducibility of neuroimaging analyses across operating systems. Front. Neuroinform. 9, 12 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gronenschild, E. H. et al. The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PLoS ONE 7, e38234 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Krefting, D. et al. Reliability of quantitative neuroimage analysis using freesurfer in distributed environments. In MICCAI Workshop on High-Performance and Distributed Computing for Medical Imaging (2011).

Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).

Article 
PubMed 

Google Scholar 

DuPre, E. et al. Beyond advertising: new infrastructures for publishing integrated research objects. PLoS Comput. Biol. 18, e1009651 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Karakuzu, A. et al. NeuroLibre: a preprint server for full-fledged reproducible neuroscience. Preprint at OSF https://doi.org/10.31219/osf.io/h89js (2022).

Gau, R. et al. Brainhack: developing a culture of open, inclusive, community-driven neuroscience. Neuron 109, 1769–1775 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sinha, A. et al. Comp-NeuroFedora, a free/open source operating system for computational neuroscience: download, install, research. BMC Neurosci. 21, 1 (2020).

Hayashi, S. et al. brainlife.io: a decentralized and open source cloud platform to support neuroscience research. Preprint at arXiv https://doi.org/10.48550/arXiv.2306.02183 (2023).

Gorgolewski, K. J. et al. BIDS apps: improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Comput. Biol. 13, e1005209 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Herrick, R. et al. XNAT Central: open sourcing imaging research data. NeuroImage 124, 1093–1096 (2016).

Article 
PubMed 

Google Scholar 

Staubitz, T., Klement, H., Teusner, R., Renz, J. & Meinel, C. CodeOcean—a versatile platform for practical programming excercises in online environments. In 2016 IEEE Global Engineering Education Conference (EDUCON) 314–323 https://doi.org/10.1109/EDUCON.2016.7474573 (2016).

Sherif, T. et al. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research. Front. Neuroinform. 8, 54 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

da Veiga Leprevost, F. et al. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics 33, 2580–2582 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Blomer, J. et al. Micro-CernVM: slashing the cost of building and deploying virtual machines. J. Phys. Conf. Ser. 513, 032009 (2014).

Article 

Google Scholar 

Jupyter, P. et al. Binder 2.0—reproducible, interactive, sharable environments for science at scale. in Proceedings of the 17th Python in Science Conference 113–120 https://doi.org/10.25080/Majora-4af1f417-011 (2018).

Atilgan, H. et al. Functional relevance of the extrastriate body area for visual and haptic object recognition: a preregistered fMRI-guided TMS study. Cereb. Cortex Commun. 4, tgad005 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Chang, J. et al. Open-source hypothalamic-ForniX (OSHy-X) atlases and segmentation tool for 3T and 7T. J. Open Source Softw. 7, 4368 (2022).

Article 

Google Scholar 

Stewart, A. W. et al. QSMxT: robust masking and artifact reduction for quantitative susceptibility mapping. Magn. Reson. Med. 87, 1289–1300 (2022).

Article 
PubMed 

Google Scholar 

Biondetti, E. et al. Multi-echo quantitative susceptibility mapping: how to combine echoes for accuracy and precision at 3 Tesla. Magn. Reson. Med. 88, 2101–2116 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kaczmarzyk, J. et al. ReproNim/neurodocker: 0.9.5. https://doi.org/10.5281/zenodo.7929032 (2023).

Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Adebimpe, A. et al. ASLPrep: a platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion. Nat. Methods 19, 683–686 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Esteban, O. et al. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE 12, e0184661 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Li, X., Morgan, P. S., Ashburner, J., Smith, J. & Rorden, C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47–56 (2016).

Article 
PubMed 

Google Scholar 

Zwiers, M. P., Moia, S. & Oostenveld, R. BIDScoin: a user-friendly application to convert source data to brain imaging data structure. Front. Neuroinform. 15, 770608 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 3, 160044 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Yushkevich, P. A. et al. User-guided segmentation of multi-modality medical imaging datasets with ITK-SNAP. Neuroinformatics 17, 83–102 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wang, R., Benner, T., Sorensen, A. G. & Wedeen, V. J. Diffusion toolkit: a software package for diffusion imaging data processing and tractography. Proc. Intl Soc. Mag. Reson. Med. 15, 3720 (2007).

Yeh, F. -C. Population-based tract-to-region connectome of the human brain and its hierarchical topology. Nat. Commun. 13, 4933 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tournier, J. -D., Calamante, F. & Connelly, A. MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66 (2012).

Article 

Google Scholar 

Pallast, N. et al. Processing pipeline for atlas-based imaging data analysis of structural and functional mouse brain MRI (AIDAmri). Front. Neuroinform. 13, 42 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Desrosiers-Gregoire, G. et al. Rodent Automated Bold Improvement of EPI Sequences (RABIES): a standardized image processing and data quality platform for rodent fMRI. Preprint at bioRxiv https://doi.org/10.1101/2022.08.20.504597 (2022).

Hangel, G. et al. Ultra-high resolution brain metabolite mapping at 7T by short-TR Hadamard-encoded FID-MRSI. NeuroImage 168, 199–210 (2018).

Article 
PubMed 

Google Scholar 

Cox, R. W. AFNI: what a long strange trip it’s been. NeuroImage 62, 743–747 (2012).

Article 
PubMed 

Google Scholar 

Avants, B. B., Tustison, N. & Johnson, H. Advanced Normalization Tools (ANTS). Insight J. 2, 1–35 (2009).

Google Scholar 

Wisse, L. E. M. et al. Automated hippocampal subfield segmentation at 7T MRI. Am. J. Neuroradiol. 37, 1050–1057 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gaser, C. et al. CAT—a computational anatomy toolbox for the analysis of structural MRI data. Preprint at bioRxiv https://doi.org/10.1101/2022.06.11.495736 (2022).

Eckstein, K. et al. Improved susceptibility weighted imaging at ultra-high field using bipolar multi-echo acquisition and optimized image processing: CLEAR-SWI. NeuroImage 237, 118175 (2021).

Article 
PubMed 

Google Scholar 

Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2, 125–141 (2012).

Article 
PubMed 

Google Scholar 

Marcus, D. S. et al. Human Connectome Project informatics: quality control, database services, and data visualization. NeuroImage 80, 202–219 (2013).

Article 
PubMed 

Google Scholar 

Estrada, S. et al. FatSegNet: a fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. Magn. Reson. Med. 83, 1471–1483 (2020).

Article 
PubMed 

Google Scholar 

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).

Article 
PubMed 

Google Scholar 

Isensee, F. et al. Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 40, 4952–4964 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Shaw, T., York, A., Ziaei, M., Barth, M. & Bollmann, S. Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) using multi-contrast MRI. NeuroImage 218, 116798 (2020).

Article 
PubMed 

Google Scholar 

Huber, L. R. et al. LayNii: a software suite for layer-fMRI. NeuroImage 237, 118091 (2021).

Article 
PubMed 

Google Scholar 

Vincent, R. D. et al. MINC 2.0: a flexible format for multi-modal images. Front. Neuroinformatics 10, 35 (2016).

Article 

Google Scholar 

Grussu, F. et al. Multi-parametric quantitative in vivo spinal cord MRI with unified signal readout and image denoising. NeuroImage 217, 116884 (2020).

Article 
PubMed 

Google Scholar 

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. NeuroImage 92, 381–397 (2014).

Article 
PubMed 

Google Scholar 

Kasper, L. et al. The PhysIO toolbox for modeling physiological noise in fMRI data. J. Neurosci. Methods 276, 56–72 (2017).

Article 
PubMed 

Google Scholar 

Dymerska, B. et al. Phase unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO). Magn. Reson. Med. 85, 2294–2308 (2021).

Article 
PubMed 

Google Scholar 

Fedorov, A. et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30, 1323–1341 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar 

De Leener, B. et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. NeuroImage 145, 24–43 (2017).

Article 
PubMed 

Google Scholar 

Ashburner, J. Computational anatomy with the SPM software. Magn. Reson. Imaging 27, 1163–1174 (2009).

Article 
PubMed 

Google Scholar 

Langkammer, C. et al. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. NeuroImage 111, 622–630 (2015).

Article 
PubMed 

Google Scholar 

Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. elastix: a toolbox for intensity-based medical image Registration. IEEE Trans. Med. Imaging 29, 196–205 (2010).

Article 
PubMed 

Google Scholar 

Shamonin, D. et al. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Front. Neuroinform. 7, 50 (2014).

PubMed 
PubMed Central 

Google Scholar 

Civier, O., Sourty, M. & Calamante, F. MFCSC: novel method to calculate mismatch between functional and structural brain connectomes, and its application for detecting hemispheric functional specialisations. Sci. Rep. 13, 3485 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Brunner, C., Delorme, A. & Makeig, S. Eeglab—an open source MATLAB toolbox for electrophysiological research. Biomed. Tech. 58, 1 (2013).

Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. -M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

Article 
PubMed 

Google Scholar 

Gramfort, A. et al. MNE software for processing MEG and EEG data. NeuroImage 86, 446–460 (2014).

Article 
PubMed 

Google Scholar 

Brunner, C., Breitwieser, C. & Müller-Putz, G. R. Sigviewer and Signalserver—open source software projects for biosignal analysis. Biomed. Eng. Tech. 58, 1 (2013).

Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).

Article 

Google Scholar 

Ribeiro, F. L., Bollmann, S. & Puckett, A. M. Predicting the retinotopic organization of human visual cortex from anatomy using geometric deep learning. NeuroImage 244, 118624 (2021).

Article 
PubMed 

Google Scholar 

Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W. & Popa, R. A. Delphi: a cryptographic inference service for neural networks. In 29th USENIX Security Symposium (USENIX Security 20) 2505–2522 (2020).

Still, M. The definitive guide to ImageMagick. vol. 1 (Springer, 2006).

Rorden, C. & Brett, M. Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200 (2000).

Article 
PubMed 

Google Scholar 

Rorden, C. rordenlab/MRIcroGL: version 20-July-2022 (v1.2.20220720) https://doi.org/10.5281/ZENODO.7533834 (2022).

Vicory, J. et al. SlicerSALT: Shape AnaLysis Toolbox. In Shape in Medical Imaging (eds. Reuter, M. et al.) vol. 11167, 65–72 (Springer International Publishing, 2018).

Rorden, C. & Hanayik, T. neurolabusc/surf-ice: version 6-October-2021 (v1.0.20211006). https://doi.org/10.5281/ZENODO.7533772 (2021)

Bumgarner, J. R. & Nelson, R. J. Open-source analysis and visualization of segmented vasculature datasets with VesselVio. Cell Rep. Methods 2, 100189 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cusack, R. et al. Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML. Front. Neuroinform. 8, 90 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Liem, F. & Gorgolewski, C. F. BIDS-Apps/baracus: v1.1.2. https://doi.org/10.5281/ZENODO.1018841 (2017).

Kim, Y. et al. BrainSuite BIDS App: containerized workflows for MRI analysis. Preprint at bioRxiv https://doi.org/10.1101/2023.03.14.532686 (2023).

Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).

Article 
PubMed 

Google Scholar 

Smith, S. M. et al. Resting-state fMRI in the Human Connectome Project. NeuroImage 80, 144–168 (2013).

Article 
PubMed 

Google Scholar 

Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 61, 3891–3898 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
Zech
  • Website

Related Posts

Using xGold to find the best young Italian strikers – Data analysis

July 30, 2024

New built-in camera capabilities in Teams, improved data analysis in Excel, and more

July 29, 2024

Kick start your data analytics studies with this $35 course bundle

July 29, 2024

Chief Statistician to submit Padu data analysis to Cabinet by end of April

July 27, 2024

Helping companies accelerate space imagery and data analytics for government clients. Comments by Dan Smoot and Liz Martin

July 26, 2024

How to simplify farm data analysis for data-driven decisions

July 26, 2024
Leave A Reply Cancel Reply

Top Reviews
Editors Picks

Outsourcing emotions: The horror of Google’s “Dear Sydney” AI ads

July 30, 2024

Meta reports second quarter results with ad sales and AI spending as top priorities

July 30, 2024

AI spending in focus as big tech companies enter ‘make it or break it’ week

July 30, 2024

While AI avatars may soon be attending meetings for us, it certainly feels like a slippery slope to an AI future that nobody wants.

July 30, 2024
About Us
About Us

Welcome to Tech Zero News!

At Tech Zero News, we are dedicated to bringing you the latest and most relevant technology news from around the world. Our mission is to keep you informed and updated on the fast-paced and ever-evolving world of technology. By automatically curating news from Google, we ensure that you receive timely and accurate information across a wide range of tech-related topics.

Our Picks

Innovation in Action: Six BLUE KNIGHT™ Resident Quickfire Challenge Winners Shape the Future of Health

July 30, 2024

Immunon surges with Phase 2 data for ovarian cancer immunotherapy | Biotechnology | The Pharmaletter

July 30, 2024

A holistic approach to biotech manufacturing

July 30, 2024

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

© 2025 tech-zero-news. Designed by tech-zero-news.
  • Home
  • About Us
  • Advertise with Us
  • DMCA Policy
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.