Schreiber, S. L. A chemical biology perspective on bioactive small molecules and binder-based approaches linking biology and precision medicine. Isr. J. Chem. 59, 52–59 (2019).
Garlick, JM & Mapp, AK. Selective regulation of dynamic protein complexes. Cell Chem. Biol. 27, 986–997 (2020).
Chattopadhyay, G. & Varadarajan, R. Rapid measurement of protein stability and folding rate using differential scanning nanofluorometry. Protein Sci. 28, 1127–1134 (2019).
Greenfield, NJ. Determine the thermodynamics of protein unfolding and binding interactions using circular dichroism collected as a function of temperature. Nat. Protoc. 1, 2527–2535 (2006).
Freire, E. Differential scanning calorimetry Methods Mol. Biol. 40, 191–218 (1995).
Atsavapranee, B., Stark, C. D., Sunden, F., Thompson, S. & Fordyce, P. M. Fundamentals of function: quantitative and scalable approaches to measuring protein stability. Cell Syst. 12, 547–560 (2021).
Pantoliano, MW et al. A general strategy for drug discovery using high-density miniaturized thermal shift assays. J. Biomol. Screen. 6, 429–440 (2001).
Semisotnov, GV et al. “Molten globule” intermediates in protein folding studied with hydrophobic fluorescent probes. Biopolymers 31, 119–128 (1991).
Simeonov, A. Recent advances in differential scanning fluorimetry in protein and small molecule discovery and characterization. Expert Opin. Drug Discov. 8, 1071–1082 (2013).
Gao, K., Oerlemans, R. & Groves, MR. Theory and application of differential scanning fluorimetry in early drug discovery. Biophys. Rev. 12, 85–104 (2020).
Biter, AB, de la Peña, AH, Thapar, R., Lin, JZ & Phillips, KJ. A novel approach to protein production by DSF-induced refolding. Sci. Rep. 6, 18906 (2016).
Lee, M. E., Dou, X., Zhu, Y. & Phillips, K. J. Refolding proteins from inclusion bodies using differential scanning fluorimetry-guided (DGR) protein refolding and the melt tracer web. Curr. Protoc. Mol. Biol. 125, e78 (2019).
Ristic, M., Rosa, N., Seabrook, SA & Newman, J. Formulation screening by differential scanning fluorimetry: how often is it effective? Acta Crystallogr. F 71, 1359–1364 (2015).
Chari, A. et al. ProteoPlex: optimizing the stability of macromolecular complexes by sparse matrix screening of chemical space. Nat. Methods 12, 859–865 (2015).
Ahmed, S., Bhasin, M., Manjunath, K. & Varadarajan, R. Prediction of residue-specific contributions to binding and thermostability using yeast surface display. Front. Mol. Biosci. 8, 800819 (2021).
Menzen, T. & Friess, W. High-throughput melting point analysis of monoclonal antibodies by differential scanning fluorimetry in the presence of detergents. J. Pharm. Sci. 102, 415–428 (2013).
Wu, T. et al. Three essential resources to improve your differential scanning fluorometry (DSF) experiments. bioRxiv preprint https://doi.org/10.1101/2020.03.22.002543 (2020).
Alexandrov, AI, Mileni, M., Chien, EYT, Hanson, MA & Stevens, RC. A microscale fluorescent thermostability assay for membrane proteins. Structure 16, 351–359 (2008).
Ihmels, H. Dyes in modern organic chemistry. Beilstein J. Org. Chem. 15, 2798–2800 (2019).
Condello, C. et al. Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer’s disease Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1714966115 (2018).
Kuenemann, MA et al. Weaver’s historically available synthetic dye collection: a chemoinformatics analysis. Chem. Sci. 8, 4334–4339 (2017).
Protein adaptive DSF data explorer. shinyapps https://padsfdyes.shinyapps.io/Exp1243_heatmap_cache/ (2024).
Gestwicki, J. Dye screening vision protocol. Zenodo https://doi.org/10.5281/zenodo.100231977 (2024).
Schiavina, M., Pontoriero, L., Uversky, VN, Felli, IC & Pierattelli, R. Highly flexible disordered region of SARS-CoV-2 nucleocapsid N protein within residues 1–248 structure: sequence-specific resonance assignment by NMR. Biomol. NMR Assign. 15, 219–227 (2021).
Giri, R. et al. Understanding COVID-19 through comparative analysis of the dark proteomes of SARS-CoV-2, human SARS, and bat SARS-like coronaviruses. Cell. Mol. Life Sci. 78, 1655–1688 (2021).
Cubuk, J. et al. SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase-separates from RNA. Nat. Commun. 12, 1936 (2021).
Wang, S. et al. Targeting liquid-liquid phase separation of SARS-CoV-2 nucleocapsid protein enhances MAVS activity and promotes innate antiviral immunity. Nat. Cell Biol. 23, 718–732 (2021).
Krafcikova, P., Silhan, J., Nencka, R. & Boura, E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap generation bound to sinefungin. Nat. Commun. 11, 3717 (2020).
Lin, S. et al. Crystal structure of SARS-CoV-2 nsp10 bound to the nsp14-ExoN domain reveals an exoribonuclease with structural and functional integrity. Nucleic Acids Res. 49, 5382–5392 (2021).
Yoshimoto, F. K. Proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 39, 198–216 (2020).
Fu, Z. et al. Complex structure of GRL0617 and SARS-CoV-2 PLpro reveals hotspots for antiviral drug discovery. Nat. Commun. 12, 488 (2021).
Schuller, M. et al. Fragments binding to the Nsp3 macrodomain of SARS-CoV-2 identified by crystallographic screening and computational docking. Sci. Adv. 7, eabf8711 (2021).
Virdi, RS et al. Discovery of drug-like ligands against the Mac1 domain of SARS-CoV-2 Nsp3. SLAS Discov. https://doi.org/10.1177/2472555220960428 (2020).
Gahbauer, S. et al. Iterative computational design and crystal structure screening identify potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2. Proc. Natl Acad. Sci. USA 120, e2212931120 (2023).
Gestwicki, J. Data_S2_dye_screening_results. Zenodo https://doi.org/10.5281/zenodo.10028692 (2023).
Milardi, D., La Rosa, C. & Grasso, D. An extended theoretical analysis of irreversible protein thermal denaturation. Biophys. Chem. 52, 183–189 (1994).
Myers, JK, Pace, CN & Scholtz, JM. Changes in m and heat capacity of denaturants: Relationship to changes in accessible surface area upon protein unfolding. Protein Sci. 4, 2138–2148 (1995).
Rees, DC & Robertson, AD “Thermodynamic influences on protein thermal stability.” Protein Sci. 10, 1187–1194 (2001).
Levine, ZG & Walker, S. Biochemistry of O-GlcNAc transferases: what is their essential function in mammalian cells? Annu. Rev. Biochem. 85, 631–657 (2016).
Alteen, MG et al. Potent De Novo Macrocyclic Peptides Inhibiting O-GlcNAc Transferase via an Allosteric Mechanism. Angew. Chem. Int. Ed. Engl. 62, e202215671 (2022).
Gestwicki, J. Supplementary Table S2_Protein screening conditions. Zenodo https://doi.org/10.5281/zenodo.10480848 (2024).
Carpenter, A. Visualizing and Analyzing Proteins in Python. Medium https://towardsdatascience.com/visualizing-and-analyzing-proteins-in-python-bd99521ccd (2021).
Welcome to UCSF Dye Screens. shinyapps https://ucsfdyescreens.shinyapps.io/home/ (2024).
Gestwicki, J. Data S3_dye_screen_results_raw_data. Zenodo https://doi.org/10.5281/zenodo.10028702 (2023).
taiawu. taiawu/dsfworld: DSFworld ShinyApp website. Zenodo https://doi.org/10.5281/zenodo.8432909 (2023).