Halchenko, Y. & Hanke, M. Open is not enough. let’s take the next step: an integrated, community-driven computing platform for neuroscience. Front. Neuroinform. 6, 22 (2012).
Google Scholar
Hanke, M. & Halchenko, Y. Neuroscience runs on GNU/Linux. Front. Neuroinform. 5, 8 (2011).
Google Scholar
Niso, G. et al. Open and reproducible neuroimaging: from study inception to publication. NeuroImage 263, 119623 (2022).
Google Scholar
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Google Scholar
Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility of compute. PLoS ONE 12, e0177459 (2017).
Google Scholar
Van Gorp, P. & Mazanek, S. SHARE: a web portal for creating and sharing executable research papers. Procedia Comput. Sci. 4, 589–597 (2011).
Google Scholar
Poline, J. -B. et al. Is neuroscience FAIR? a call for collaborative standardisation of neuroscience data. Neuroinformatics 20, 507–512 (2022).
Google Scholar
Silberzahn, R. et al. Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv. Methods Pract. Psychol. Sci. 1, 337–356 (2018).
Google Scholar
Tapera, T. M. et al. FlywheelTools: data curation and manipulation on the Flywheel platform. Front. Neuroinform. 15, 678403 (2021).
Google Scholar
Routier, A. et al. Clinica: an open-source software platform for reproducible clinical neuroscience studies. Front. Neuroinform. 15, 689675 (2021).
Google Scholar
Abe, T. et al. Neuroscience cloud analysis as a service: an open-source platform for scalable, reproducible data analysis. Neuron 110, 2771–2789 (2022).
Google Scholar
Goodman, S. N., Fanelli, D. & Ioannidis, J. P. A. What does research reproducibility mean? Sci. Transl. Med. 8, 341ps12–341ps12 (2016).
Google Scholar
Nosek, B. A. et al. Replicability, robustness, and reproducibility in psychological science. Annu. Rev. Psychol. 73, 719–748 (2022).
Google Scholar
Plesser, H. E. Reproducibility vs. replicability: a brief history of a confused terminology. Front. Neuroinform. 11, 76 (2018).
Google Scholar
Nosek, B. A. et al. Promoting an open research culture. Science 348, 1422–1425 (2015).
Google Scholar
Boettiger, C. An introduction to Docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 49, 71–79 (2015).
Google Scholar
Trunov, A. S., Voronova, L. I., Voronov, V. I. & Ayrapetov, D. P. Container cluster model development for legacy applications integration in scientific software system. in 2018 IEEE International Conference ‘Quality Management, Transport and Information Security, Information Technologies’ (IT QM IS) 815–819 https://doi.org/10.1109/ITMQIS.2018.8525120 (2018).
Thomas, T. et al. Jupyter Notebooks—a publishing format for reproducible computational workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds Loizides, F. & Schmid, B.) 87–90 (IOS Press, 2016).
Glatard, T. et al. Reproducibility of neuroimaging analyses across operating systems. Front. Neuroinform. 9, 12 (2015).
Google Scholar
Gronenschild, E. H. et al. The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PLoS ONE 7, e38234 (2012).
Google Scholar
Krefting, D. et al. Reliability of quantitative neuroimage analysis using freesurfer in distributed environments. In MICCAI Workshop on High-Performance and Distributed Computing for Medical Imaging (2011).
Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
Google Scholar
DuPre, E. et al. Beyond advertising: new infrastructures for publishing integrated research objects. PLoS Comput. Biol. 18, e1009651 (2022).
Google Scholar
Karakuzu, A. et al. NeuroLibre: a preprint server for full-fledged reproducible neuroscience. Preprint at OSF https://doi.org/10.31219/osf.io/h89js (2022).
Gau, R. et al. Brainhack: developing a culture of open, inclusive, community-driven neuroscience. Neuron 109, 1769–1775 (2021).
Google Scholar
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).
Google Scholar
Sinha, A. et al. Comp-NeuroFedora, a free/open source operating system for computational neuroscience: download, install, research. BMC Neurosci. 21, 1 (2020).
Hayashi, S. et al. brainlife.io: a decentralized and open source cloud platform to support neuroscience research. Preprint at arXiv https://doi.org/10.48550/arXiv.2306.02183 (2023).
Gorgolewski, K. J. et al. BIDS apps: improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Comput. Biol. 13, e1005209 (2017).
Google Scholar
Herrick, R. et al. XNAT Central: open sourcing imaging research data. NeuroImage 124, 1093–1096 (2016).
Google Scholar
Staubitz, T., Klement, H., Teusner, R., Renz, J. & Meinel, C. CodeOcean—a versatile platform for practical programming excercises in online environments. In 2016 IEEE Global Engineering Education Conference (EDUCON) 314–323 https://doi.org/10.1109/EDUCON.2016.7474573 (2016).
Sherif, T. et al. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research. Front. Neuroinform. 8, 54 (2014).
Google Scholar
da Veiga Leprevost, F. et al. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics 33, 2580–2582 (2017).
Google Scholar
Blomer, J. et al. Micro-CernVM: slashing the cost of building and deploying virtual machines. J. Phys. Conf. Ser. 513, 032009 (2014).
Google Scholar
Jupyter, P. et al. Binder 2.0—reproducible, interactive, sharable environments for science at scale. in Proceedings of the 17th Python in Science Conference 113–120 https://doi.org/10.25080/Majora-4af1f417-011 (2018).
Atilgan, H. et al. Functional relevance of the extrastriate body area for visual and haptic object recognition: a preregistered fMRI-guided TMS study. Cereb. Cortex Commun. 4, tgad005 (2023).
Google Scholar
Chang, J. et al. Open-source hypothalamic-ForniX (OSHy-X) atlases and segmentation tool for 3T and 7T. J. Open Source Softw. 7, 4368 (2022).
Google Scholar
Stewart, A. W. et al. QSMxT: robust masking and artifact reduction for quantitative susceptibility mapping. Magn. Reson. Med. 87, 1289–1300 (2022).
Google Scholar
Biondetti, E. et al. Multi-echo quantitative susceptibility mapping: how to combine echoes for accuracy and precision at 3 Tesla. Magn. Reson. Med. 88, 2101–2116 (2022).
Google Scholar
Kaczmarzyk, J. et al. ReproNim/neurodocker: 0.9.5. https://doi.org/10.5281/zenodo.7929032 (2023).
Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).
Google Scholar
Adebimpe, A. et al. ASLPrep: a platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion. Nat. Methods 19, 683–686 (2022).
Google Scholar
Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).
Google Scholar
Esteban, O. et al. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE 12, e0184661 (2017).
Google Scholar
Li, X., Morgan, P. S., Ashburner, J., Smith, J. & Rorden, C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47–56 (2016).
Google Scholar
Zwiers, M. P., Moia, S. & Oostenveld, R. BIDScoin: a user-friendly application to convert source data to brain imaging data structure. Front. Neuroinform. 15, 770608 (2022).
Google Scholar
Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 3, 160044 (2016).
Google Scholar
Yushkevich, P. A. et al. User-guided segmentation of multi-modality medical imaging datasets with ITK-SNAP. Neuroinformatics 17, 83–102 (2019).
Google Scholar
Wang, R., Benner, T., Sorensen, A. G. & Wedeen, V. J. Diffusion toolkit: a software package for diffusion imaging data processing and tractography. Proc. Intl Soc. Mag. Reson. Med. 15, 3720 (2007).
Yeh, F. -C. Population-based tract-to-region connectome of the human brain and its hierarchical topology. Nat. Commun. 13, 4933 (2022).
Google Scholar
Tournier, J. -D., Calamante, F. & Connelly, A. MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66 (2012).
Google Scholar
Pallast, N. et al. Processing pipeline for atlas-based imaging data analysis of structural and functional mouse brain MRI (AIDAmri). Front. Neuroinform. 13, 42 (2019).
Google Scholar
Desrosiers-Gregoire, G. et al. Rodent Automated Bold Improvement of EPI Sequences (RABIES): a standardized image processing and data quality platform for rodent fMRI. Preprint at bioRxiv https://doi.org/10.1101/2022.08.20.504597 (2022).
Hangel, G. et al. Ultra-high resolution brain metabolite mapping at 7T by short-TR Hadamard-encoded FID-MRSI. NeuroImage 168, 199–210 (2018).
Google Scholar
Cox, R. W. AFNI: what a long strange trip it’s been. NeuroImage 62, 743–747 (2012).
Google Scholar
Avants, B. B., Tustison, N. & Johnson, H. Advanced Normalization Tools (ANTS). Insight J. 2, 1–35 (2009).
Wisse, L. E. M. et al. Automated hippocampal subfield segmentation at 7T MRI. Am. J. Neuroradiol. 37, 1050–1057 (2016).
Google Scholar
Gaser, C. et al. CAT—a computational anatomy toolbox for the analysis of structural MRI data. Preprint at bioRxiv https://doi.org/10.1101/2022.06.11.495736 (2022).
Eckstein, K. et al. Improved susceptibility weighted imaging at ultra-high field using bipolar multi-echo acquisition and optimized image processing: CLEAR-SWI. NeuroImage 237, 118175 (2021).
Google Scholar
Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2, 125–141 (2012).
Google Scholar
Marcus, D. S. et al. Human Connectome Project informatics: quality control, database services, and data visualization. NeuroImage 80, 202–219 (2013).
Google Scholar
Estrada, S. et al. FatSegNet: a fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. Magn. Reson. Med. 83, 1471–1483 (2020).
Google Scholar
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).
Google Scholar
Isensee, F. et al. Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 40, 4952–4964 (2019).
Google Scholar
Shaw, T., York, A., Ziaei, M., Barth, M. & Bollmann, S. Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) using multi-contrast MRI. NeuroImage 218, 116798 (2020).
Google Scholar
Huber, L. R. et al. LayNii: a software suite for layer-fMRI. NeuroImage 237, 118091 (2021).
Google Scholar
Vincent, R. D. et al. MINC 2.0: a flexible format for multi-modal images. Front. Neuroinformatics 10, 35 (2016).
Google Scholar
Grussu, F. et al. Multi-parametric quantitative in vivo spinal cord MRI with unified signal readout and image denoising. NeuroImage 217, 116884 (2020).
Google Scholar
Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. NeuroImage 92, 381–397 (2014).
Google Scholar
Kasper, L. et al. The PhysIO toolbox for modeling physiological noise in fMRI data. J. Neurosci. Methods 276, 56–72 (2017).
Google Scholar
Dymerska, B. et al. Phase unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO). Magn. Reson. Med. 85, 2294–2308 (2021).
Google Scholar
Fedorov, A. et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30, 1323–1341 (2012).
Google Scholar
De Leener, B. et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. NeuroImage 145, 24–43 (2017).
Google Scholar
Ashburner, J. Computational anatomy with the SPM software. Magn. Reson. Imaging 27, 1163–1174 (2009).
Google Scholar
Langkammer, C. et al. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. NeuroImage 111, 622–630 (2015).
Google Scholar
Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. elastix: a toolbox for intensity-based medical image Registration. IEEE Trans. Med. Imaging 29, 196–205 (2010).
Google Scholar
Shamonin, D. et al. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Front. Neuroinform. 7, 50 (2014).
Google Scholar
Civier, O., Sourty, M. & Calamante, F. MFCSC: novel method to calculate mismatch between functional and structural brain connectomes, and its application for detecting hemispheric functional specialisations. Sci. Rep. 13, 3485 (2023).
Google Scholar
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011).
Google Scholar
Brunner, C., Delorme, A. & Makeig, S. Eeglab—an open source MATLAB toolbox for electrophysiological research. Biomed. Tech. 58, 1 (2013).
Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. -M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).
Google Scholar
Gramfort, A. et al. MNE software for processing MEG and EEG data. NeuroImage 86, 446–460 (2014).
Google Scholar
Brunner, C., Breitwieser, C. & Müller-Putz, G. R. Sigviewer and Signalserver—open source software projects for biosignal analysis. Biomed. Eng. Tech. 58, 1 (2013).
Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).
Google Scholar
Ribeiro, F. L., Bollmann, S. & Puckett, A. M. Predicting the retinotopic organization of human visual cortex from anatomy using geometric deep learning. NeuroImage 244, 118624 (2021).
Google Scholar
Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W. & Popa, R. A. Delphi: a cryptographic inference service for neural networks. In 29th USENIX Security Symposium (USENIX Security 20) 2505–2522 (2020).
Still, M. The definitive guide to ImageMagick. vol. 1 (Springer, 2006).
Rorden, C. & Brett, M. Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200 (2000).
Google Scholar
Rorden, C. rordenlab/MRIcroGL: version 20-July-2022 (v1.2.20220720) https://doi.org/10.5281/ZENODO.7533834 (2022).
Vicory, J. et al. SlicerSALT: Shape AnaLysis Toolbox. In Shape in Medical Imaging (eds. Reuter, M. et al.) vol. 11167, 65–72 (Springer International Publishing, 2018).
Rorden, C. & Hanayik, T. neurolabusc/surf-ice: version 6-October-2021 (v1.0.20211006). https://doi.org/10.5281/ZENODO.7533772 (2021)
Bumgarner, J. R. & Nelson, R. J. Open-source analysis and visualization of segmented vasculature datasets with VesselVio. Cell Rep. Methods 2, 100189 (2022).
Google Scholar
Cusack, R. et al. Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML. Front. Neuroinform. 8, 90 (2015).
Google Scholar
Liem, F. & Gorgolewski, C. F. BIDS-Apps/baracus: v1.1.2. https://doi.org/10.5281/ZENODO.1018841 (2017).
Kim, Y. et al. BrainSuite BIDS App: containerized workflows for MRI analysis. Preprint at bioRxiv https://doi.org/10.1101/2023.03.14.532686 (2023).
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).
Google Scholar
Smith, S. M. et al. Resting-state fMRI in the Human Connectome Project. NeuroImage 80, 144–168 (2013).
Google Scholar
Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).
Google Scholar
Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 61, 3891–3898 (2021).
Google Scholar