Close Menu
Tech Zero NewsTech Zero News
  • Home
  • AI
  • VR & AR
    • Automotive Technology & Autonomous Vehicles
    • Big Data & Data Analysis
    • Blockchain & Cryptocurrencies
    • Energy & Green Technology
    • Games & Gaming Technology
    • Mobile Communications & Telecommunications
    • Technological Developments in the Healthcare Industry
    • Technology Market Trends & Analysis
    • Technology Policy & Regulation
  • Biotechnology
  • Cybersecurity
  • Cloud Computing & Infrastructure
  • Space Technology
    • IOT
    • Startups & Innovations
  • Gaming
  • Robotics
What's Hot

California DMV uses Avalanche (AVAX)

August 1, 2024

University of Limerick Researchers Unveil Robotic Solution for Floating Wind Turbine Maintenance

August 1, 2024

New York startup sells used Pelotons, a pandemic hit

July 30, 2024
Facebook X (Twitter) Instagram
Tech Zero News
  • Home
  • AI
  • VR & AR
    • Automotive Technology & Autonomous Vehicles
    • Big Data & Data Analysis
    • Blockchain & Cryptocurrencies
    • Energy & Green Technology
    • Games & Gaming Technology
    • Mobile Communications & Telecommunications
    • Technological Developments in the Healthcare Industry
    • Technology Market Trends & Analysis
    • Technology Policy & Regulation
  • Biotechnology
  • Cybersecurity
  • Cloud Computing & Infrastructure
  • Space Technology
    • IOT
    • Startups & Innovations
  • Gaming
  • Robotics
Tech Zero NewsTech Zero News
Home » Complete substitution with modified nucleotides in self-amplifying RNA suppresses the interferon response and increases potency
Biotechnology

Complete substitution with modified nucleotides in self-amplifying RNA suppresses the interferon response and increases potency

ZechBy ZechJuly 8, 2024No Comments8 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email


Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Kormann, M. S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Minnaert, A. K. et al. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: getting the message across. Adv. Drug Deliv. Rev. 176, 113900 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Geall, A. J., Kis, Z. & Ulmer, J. B. Vaccines on demand, part II: future reality. Expert Opin. Drug Discov. 18, 119–127 (2023).

Article 
PubMed 

Google Scholar 

Bloom, K., van den Berg, F. & Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 28, 117–129 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Trougakos, I. P. et al. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol. Med. 28, 542–554 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ndeupen, S. et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 24, 103479 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ju, Y. et al. Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines. Nat. Rev. Immunol. 23, 135–136 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Low, J. G. et al. A phase I/II randomized, double-blinded, placebo-controlled trial of a self-amplifying Covid-19 mRNA vaccine. NPJ Vaccines 7, 161 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Akahata, W. et al. Safety and immunogenicity of SARS-CoV-2 self-amplifying RNA vaccine expressing an anchored RBD: a randomized, observer-blind phase 1 study. Cell Rep. Med. 4, 101134 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhong, Z. et al. Corticosteroids and cellulose purification improve, respectively, the in vivo translation and vaccination efficacy of sa-mRNAs. Mol. Ther. 29, 1370–1381 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Pepini, T. et al. Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J. Immunol. 198, 4012–4024 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Huysmans, H. et al. Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin. Mol. Ther. Nucleic Acids 17, 867–878 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Li, Y. et al. In vitro evolution of enhanced RNA replicons for immunotherapy. Sci. Rep. 9, 6932 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Blakney, A. K. et al. Innate inhibiting proteins enhance expression and immunogenicity of self-amplifying RNA. Mol. Ther. 29, 1174–1185 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Kimura, T. et al. A localizing nanocarrier formulation enables multi-target immune responses to multivalent replicating RNA with limited systemic inflammation. Mol. Ther. 31, 2360–2375 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Kairuz, D., Samudh, N., Ely, A., Arbuthnot, P. & Bloom, K. Advancing mRNA technologies for therapies and vaccines: an African context. Front. Immunol. 13, 1018961 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Voigt, E. A. et al. A self-amplifying RNA vaccine against COVID-19 with long-term room-temperature stability. NPJ Vaccines 7, 136 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Beissert, T. et al. A trans-amplifying RNA vaccine strategy for induction of potent protective immunity. Mol. Ther. 28, 119–128 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Geall, A., Hekele, A. & Mandl, C. RNA containing modified nucleotides and use thereof in vaccines. WIPO publication no. WO2011/005799A3 (2010); https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2011005799

Erasmus, J. H. et al. Intramuscular delivery of replicon RNA encoding ZIKV-117 human monoclonal antibody protects against Zika virus infection. Mol. Ther. Methods Clin. Dev. 18, 402–414 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Pollock, K. M. et al. Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial. EClinicalMedicine 44, 101262 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Blakney, A. K. et al. Effects of cationic adjuvant formulation particle type, fluidity and immunomodulators on delivery and immunogenicity of saRNA. J. Control. Release 304, 65–74 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Papukashvili, D. et al. Self-amplifying RNA approach for protein replacement therapy. Int. J. Mol. Sci. 23, 12884 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kairuz, D., Samudh, N., Ely, A., Arbuthnot, P. & Bloom, K. Production, characterization, and assessment of permanently cationic and ionizable lipid nanoparticles for use in the delivery of self-amplifying RNA vaccines. Pharmaceutics 15, 1173 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Deering, R. P., Kommareddy, S., Ulmer, J. B., Brito, L. A. & Geall, A. J. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin. Drug Deliv. 11, 885–899 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Baiersdorfer, M. et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15, 26–35 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

de Alwis, R. et al. A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice. Mol. Ther. 29, 1970–1983 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Dinnon, K. H. 3rd et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

CSL. Japan’s Ministry of Health, Labour and Welfare approves CSL and Arcturus Therapeutics’ ARCT-154, the first self-amplifying mRNA vaccine approved for COVID in adults. https://newsroom.csl.com/2023-11-28-Japans-Ministry-of-Health,-Labour-and-Welfare-Approves-CSL-and-Arcturus-Therapeutics-ARCT-154,-the-first-Self-Amplifying-mRNA-vaccine-approved-for-COVID-in-adults (27 November 2023).

Dolgin, E. Self-copying RNA vaccine wins first full approval: what’s next? Nature 624, 236–237 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Zhong, Z. et al. Immunogenicity and protection efficacy of a naked self-replicating mRNA-based Zika virus vaccine. Vaccines 7, 96 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. 29, 344–347 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Miller, J. et al. Substantial neutralization escape by SARS-CoV-2 Omicron variants BQ.1.1 and XBB.1. N. Engl. J. Med. 388, 662–664 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Arora, P. et al. Neutralisation sensitivity of the SARS-CoV-2 XBB.1 lineage. Lancet Infect. Dis. 23, 147–148 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hachmann, N. P., Miller, J., Collier, A. Y. & Barouch, D. H. Neutralization escape by SARS-CoV-2 Omicron subvariant BA.4.6. N. Engl. J. Med. 387, 1904–1906 (2022).

Article 
PubMed 

Google Scholar 

Andrews, N. et al. Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. N. Engl. J. Med. 386, 1532–1546 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Cele, S. et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 602, 654–656 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat. Med. 28, 472–476 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

GeurtsvanKessel, C. H. et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol. 7, eabo2202 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Addetia, A. et al. Neutralization, effector function and immune imprinting of Omicron variants. Nature 621, 592–601 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Keeton, R. et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 603, 488–492 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kaplonek, P. et al. mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern. Immunity 55, 355–365.e4 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Aboshi, M. et al. Safety and immunogenicity of VLPCOV-02, a SARS-CoV-2 self-amplifying RNA vaccine with a modified base, 5-methylcytosine. iScience 27, 108964 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Komori, M. et al. Incorporation of 5 methylcytidine alleviates innate immune response to self-amplifying RNA vaccine. Preprint at bioRxiv https://doi.org/10.1101/2023.11.01.565056 (2023).

Chen, C. K. et al. Structured elements drive extensive circular RNA translation. Mol. Cell 81, 4300–4318.e13 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41, 262–272 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Kameda, S., Ohno, H. & Saito, H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res. 51, e24 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Petrakova, O. et al. Noncytopathic replication of Venezuelan equine encephalitis virus and eastern equine encephalitis virus replicons in mammalian cells. J. Virol. 79, 7597–7608 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yoshioka, N. et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell 13, 246–254 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Swart, L. E. et al. A robust post-insertion method for the preparation of targeted siRNA LNPs. Int. J. Pharm. 620, 121741 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Kenney, D. J. et al. Humanized mice reveal a macrophage-enriched gene signature defining human lung tissue protection during SARS-CoV-2 infection. Cell Rep. 39, 110714 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
Zech
  • Website

Related Posts

Innovation in Action: Six BLUE KNIGHT™ Resident Quickfire Challenge Winners Shape the Future of Health

July 30, 2024

Immunon surges with Phase 2 data for ovarian cancer immunotherapy | Biotechnology | The Pharmaletter

July 30, 2024

A holistic approach to biotech manufacturing

July 30, 2024

BioNTech’s BNT111 posts strong top-line results | Biotechnology | The Pharmaletter

July 30, 2024

Biotech API Manufacturing Market Booming | Biotechnology | The Pharmaletter

July 30, 2024

Uncovering Sjögren’s Syndrome | Biotechnology | The Pharmaletter

July 30, 2024
Leave A Reply Cancel Reply

Top Reviews
Editors Picks

Outsourcing emotions: The horror of Google’s “Dear Sydney” AI ads

July 30, 2024

Meta reports second quarter results with ad sales and AI spending as top priorities

July 30, 2024

AI spending in focus as big tech companies enter ‘make it or break it’ week

July 30, 2024

While AI avatars may soon be attending meetings for us, it certainly feels like a slippery slope to an AI future that nobody wants.

July 30, 2024
About Us
About Us

Welcome to Tech Zero News!

At Tech Zero News, we are dedicated to bringing you the latest and most relevant technology news from around the world. Our mission is to keep you informed and updated on the fast-paced and ever-evolving world of technology. By automatically curating news from Google, we ensure that you receive timely and accurate information across a wide range of tech-related topics.

Our Picks

Innovation in Action: Six BLUE KNIGHT™ Resident Quickfire Challenge Winners Shape the Future of Health

July 30, 2024

Immunon surges with Phase 2 data for ovarian cancer immunotherapy | Biotechnology | The Pharmaletter

July 30, 2024

A holistic approach to biotech manufacturing

July 30, 2024

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

© 2025 tech-zero-news. Designed by tech-zero-news.
  • Home
  • About Us
  • Advertise with Us
  • DMCA Policy
  • Privacy Policy
  • Terms and Conditions

Type above and press Enter to search. Press Esc to cancel.